The generator matrix

 1  0  0  1  1  1  1  1  1 2X^2  1  1 2X^2+X  1  1  1  X 2X^2+X  1  1 X^2+X 2X^2+2X  1  1 2X^2+X  1  1  1  1  1  1 2X  1  1  1  1  1  1  1  1 2X^2 2X^2  1 X^2  1  0 X^2+2X X^2+2X  1 X^2+X  1  1 X^2  1  1  1  1  1  1 X^2+2X  1  1 2X^2+2X  1  1 X^2+2X  1  0 2X^2+2X  1  1
 0  1  0 2X^2  1 2X^2+1 2X^2+2  X  2  1 2X^2+2X+1 2X^2+2X+2  1 X^2 2X^2+X+2 X^2+2X+1  1 2X X^2+2X+2 2X  1  1 2X^2+X+1 2X^2+X  0 X^2+1  1 X+2 2X X^2+2X 2X^2+X+2  1  X 2X^2+1 2X+2 2X+1 2X^2+2X+1 2X+1 X^2+2X X+1  1 X^2+X  0  1  2 2X  1 2X^2+X 2X^2+X  1 2X+2 X+2  1 X^2+1 X^2+2 2X^2+1 X^2+2X+2 X^2+X 2X^2+2X  1 2X^2+2X+2 X^2+2X+1  1 X^2+2X+1 2X^2+2 2X^2 X^2+2X+2  1  1 2X^2+2X 2X^2+X+2
 0  0  1 2X^2+2X+1 2X+1 2X^2 X^2+X+2 X+2 X^2+2X 2X^2+1 2X^2+2X+2 2X^2+1 2X^2+2 X^2+X 2X^2+X+2 X^2 X^2+1  1 2X^2+2X 2X+2  0 2X^2+1  1 X+1  1 2X^2+X  2 X^2+X+1 X^2+2 X+1 2X+2  X 2X^2+2 2X 2X^2+X X^2+X+1 2X^2+2X+1  2 X+2 X^2+2X X^2+2X+2  1 X^2+2 X+1 2X^2+2X+2  1 X+1  1 X^2+X 2X X^2+X+2 X^2+2X+1  2 X^2+2X+2 X^2+X+1 X+1 2X^2  0 X^2+2X+1 X^2+X+2 2X+2 2X^2+X 2X^2+2X  1 2X^2+1  1 2X^2+2X+1 X^2+2 2X X^2 X^2+1

generates a code of length 71 over Z3[X]/(X^3) who�s minimum homogenous weight is 136.

Homogenous weight enumerator: w(x)=1x^0+990x^136+996x^137+2124x^138+2418x^139+1296x^140+1576x^141+2508x^142+1128x^143+1272x^144+1632x^145+894x^146+834x^147+840x^148+342x^149+422x^150+354x^151+36x^152+6x^154+6x^156+6x^161+2x^162

The gray image is a linear code over GF(3) with n=639, k=9 and d=408.
This code was found by Heurico 1.16 in 1.08 seconds.